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A B S T R A C T S   

Environmental models have a key role to play in understanding complex environmental phenomena in space and 
time. Although their inherent uncertainty and non-identifiability are being increasingly recognized with the 
development and application of various methods, a more holistic analysis of all sources of model uncertainty is 
warranted. This paper addresses sources of uncertainty from various types of input datasets and model param-
eters, including those related to model structure assumptions, using a Soil and Water Assessment Tool (SWAT) 
application for the Minjiang River watershed, China. The holistic uncertainty sources in the SWAT application 
are summarized, and a sensitivity analysis (SA) is applied to examine the relative importance of the uncertainty 
sources influencing average streamflow and the load of nitrate. The analysis reveals that uncertainties related to 
the stream network precision and certain SWAT parameters are the most critical factors. Furthermore, building 
upon our SA framework to consider uncertainty sources more holistically would provide a good starting point for 
subsequent SA of spatially distributed environmental models in general.   

1. Introduction 

Deterministic environmental models offer useful methods for 
exploring problems, providing predictions, and supporting decisions 
that involve complex environmental phenomena evolving in space and 
time. It has become increasingly recognized, however, that these models 
are almost always non-identifiable (Guillaume et al., 2019), in the sense 
that the quantity and quality of data are insufficient to parameterize the 
models uniquely, and that the associated modelling must address a wide 
range of uncertainties, especially those related to predicting the impact 
of possible management actions. Accordingly, Uusitalo et al. (2015) 
review various methods that can be applied to evaluate uncertainty of 
deterministic model outputs. They cover expert assessment, model 
emulation, sensitivity analysis (SA) and use of multiple models, arguing 
that the best method for uncertainty evaluation is determined by the 
definition of a model, and the amount of available information. SA is an 

established approach to model assessment by quantitatively evaluating 
the change in model output(s) with respect to changes in model factors 
(usually parameters, forcing and other input data). A deterministic 
environmental model can be easily coupled with SA based on Monte 
Carlo type simulation (Farmer and Vogel, 2016). SA offers a quantitative 
evaluation for uncertainty in a model, rather than a qualitative evalu-
ation which, for example, expert assessment does (Uusitalo et al., 2015), 
although qualitative evaluation could provide additional evidence to 
further support decision making and might be more efficient when a 
modeler is well-informed. In this paper we employ a global method of SA 
(Saltelli et al., 2008) as opposed to a local method. A global method 
allows one to compute the contribution to output sensitivity over a 
plausible range of factor values. 

Global SA is undertaken here as a useful first step in addressing and 
understanding the criticality of uncertainty sources (see Norton, 2015 
for an overview of methods, and Crosetto and Tarantola, 2001; Gan 
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et al., 2014; Tong, 2015) by assessing those factors, and their plausible 
range of values, that dominate changes in model outputs. Understanding 
the criticalities can then be valuable for undertaking an uncertainty 
analysis in the traditional probabilistic sense, for example, where one 
assumes prior distributions of parameters and finds posterior distribu-
tions based on some measure of likelihood. 

As indicated in the literature review of Section 2, previous ap-
proaches to SA tend to address only a modest set of the sources of un-
certainty for spatially distributed environmental models. The aim of this 
article is to illustrate how a more holistic SA approach to spatially 
distributed environmental models can be used to identify their critical 
sources of uncertainty, which would subsequently allow focus on them 
for more specific uncertainty analysis and even its reduction. The Soil 
and Water Assessment Tool (SWAT) (Neitsch et al., 2011) is used as an 
archetypal example as it is the most frequently used water 
quantity-quality model (Fu et al., 2019; Ray, 2018). It is also a typical 
example of the type of uncertainties that need to be considered in a 
spatially distributed environmental model. The global SA approach 
undertaken is more complete than previous SA studies on spatially 
distributed environmental models in the sense that: it attempts to 
address model structure uncertainty in combination with the usual 
model parameter and data uncertainties; and examines impact on 
average streamflow as well as water quality outputs. Thus, this article 
addresses the uncertainty of model structure input parameters related to 
the submodels of a SWAT application [i.e., watershed delineation and 
hydrological response unit (HRU) characteristics]. It also explores the 
measurement uncertainty of the digital elevation model (DEM) (i.e., its 
vertical accuracy), and the uncertainty of boundaries of classes in 
land-use-land-cover (LULC) and soil datasets (Crosetto and Tarantola, 
2001; Goodchild and Guoqing, 1992) because they have a profound 
effect on watershed delineation (Oksanen and Sarjakoski, 2005; Wu 
et al., 2008) and HRU creation, respectively. Another aspect investi-
gated is the impact of measurement errors in meteorological information 
on model outputs. Finally, the SA is also applied to the model parameters 
investigated as has been the primary focus in the past (e.g., Setegn et al., 
2010; Wu and Liu, 2012; Yang et al., 2018; Zhao et al., 2018), some of 
which relate to model structure assumptions. Clearly, while it is not 
possible to investigate all model structure assumptions as these can be 
innumerable in an environmental modelling exercise, it is acknowl-
edged that expert assessment is a key, complementary and qualitative 
method that can be used to justify other model structure assumptions in 
relation to uncertainty (O’Hagan, 2012; Uusitalo et al., 2015). Our SA 
approach could therefore be followed up with a formal uncertainty 
analysis to help in setting the range of prior distributions and fixing 
unimportant factors, which is especially important when sampling needs 
to be limited because of high computational demands of the environ-
mental model. 

The remainder of this article is organized as follows. Section 2 con-
tains a literature review and key qualitative findings of previous SA 
studies on the SWAT model. Section 3 briefly explains SWAT and the 
extended Fourier Amplitude Sensitivity Test (FAST) method which is the 
global SA method undertaken here. Then, in Section 4, the detailed 
holistic SA process is reported with our SWAT application to the Min-
jiang River watershed in Sichuan, China. This analysis follows a general 
process of SA (Cheng et al., 2014; Gan et al., 2014): identifying uncer-
tainty sources associated with submodels in SWAT, and propagating the 
uncertainty from the identified source. Results of analyzing the uncer-
tainty sources using SA appear in Section 5. Specifically, this article 
identifies uncertainty sources related to model structure input parame-
ters and datasets, as well as general model parameters. Then, uncer-
tainty propagation methods are utilized with respect to the 
corresponding uncertainty sources. For spatial input datasets, the mea-
surement uncertainty of a DEM is propagated using a sequential 
Gaussian simulation to represent spatially autocorrelated uncertainty 
(Goovaerts, 1997; Pebesma, 2004), and the boundary uncertainties of 
LULC and soil datasets are simulated by adopting the epsilon band 

approach (Crosetto and Tarantola, 2001; Shi, 1998). The SA evaluates 
the relative importance of the uncertainty sources in the average 
streamflow (FLOW) and loads of nitrate (NO3). This article concludes in 
Section 6 with a discussion on future work that could profitably be 
conducted in relation to our analysis. 

2. Previous SA studies on SWAT 

There has been too little attention given to sensitivity analysis of 
spatially distributed models that focuses on a wide range of un-
certainties, especially the influence of model structure assumptions. In 
illustration, this section explores limitations of previous SA studies for 
the water quantity-quality model known as SWAT, partly because it 
provides a typical example of the limitations of previous sensitivity 
studies with respect to a spatially distributed environmental model. 
SWAT requires various model input datasets and parameters. Some of 
these factors are related to model structure uncertainty, as in its 
sequential submodels for these prerequisite processes, including spatial 
input datasets (e.g., DEM, LULC, and soil datasets) for watershed 
delineation and HRU creation. Although the submodels for these pre-
requisite processes can be considered as important sources of uncer-
tainty that have interactions with the uncertainty of other submodels, as 
well as impacts on SWAT outputs, SA related studies remain incomplete 
in terms of addressing all sources of uncertainty, especially those related 
to spatial input datasets and parameters for the submodels. 

Thus, in SWAT applications, SA has primarily been conducted with 
respect to SWAT parameters (e.g., Setegn et al., 2010; Yang et al., 2018). 
In general, they have found that only a few parameters have been 
identified in applications to be the major sources of uncertainty, with 
other parameters having minor influence (Kumar and Merwade, 2009; 
Li et al., 2010; Shen et al., 2008). However, model input parameters 
related to other submodels (e.g., watershed delineation and HRU crea-
tion) have received relatively less sensitivity and uncertainty attention, 
although the potential impacts of the parameters of these submodels 
have been recognized (Fitzhugh and Mackay, 2000; Rouhani et al., 
2009). Fitzhugh and Mackay (2000), for example with an application in 
the Pheasant Branch watershed in Dane County, Wisconsin, reported 
that the size of a watershed has no critical impact on streamflow and 
outlet sediment estimation. Conversely, another study (Rouhani et al., 
2009) involving a SWAT application in the Grote Nete River watershed 
in Belgium revealed that streamflow estimation is more accurate with 
respect to its observed value when a larger watershed size is employed. 
These uncertainties of the parameters can be partially related to the 
model structure uncertainty (Matott et al., 2009), which is caused by the 
inability of the model structure to represent watersheds and HRUs. In 
particular, investigating the uncertainty of the parameters related to 
subwatershed sizes helps to address a scale issue in the model, which is 
one major aspect of the model structure uncertainty (Butts et al., 2004), 
by exploring the different levels of abstracting and generalizing of pro-
cess levels. 

Uncertainty related to meteorological input datasets has been 
considered an important uncertainty source in SWAT modelling (e.g., 
Aouissi et al., 2013; Strauch et al., 2012; Tasdighi et al., 2018), with 
respect to both sampling (Villarini et al., 2008) and measurement errors 
(Ciach, 2002). Among the uncertainties related to meteorological in-
formation, the impact of the density of meteorological monitoring sta-
tions on SWAT predictions has received some attention, which is related 
to sampling uncertainty. The uncertainty of SWAT predictions has been 
shown to substantially increase with an excessive reduction in the 
number of meteorological monitoring stations until a certain threshold 
value (B�ardossy and Das, 2008; Chaplot et al., 2005). Correspondingly, 
Cho et al. (2009) reported an exponential increase in the uncertainty of 
SWAT predictions with a decreasing number of meteorological moni-
toring stations. In addition, SWAT allocates meteorological information 
from the nearest station to the center of subwatersheds (Aouissi et al., 
2013; Masih et al., 2011; Scherer et al., 2015), which can be also 
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considered a source of uncertainty in SWAT output estimation. Thus, 
advanced interpolation methods for meteorological information allo-
cation have been developed to increase the accuracy of SWAT estima-
tions (Masih et al., 2011; Strauch et al., 2012). However, the impact of 
measurement uncertainty in meteorological information on SWAT 
output estimation is rarely investigated, although measurement uncer-
tainty has also been recognized as a source of uncertainty (Shen et al., 
2015a). 

Spatial input datasets (e.g., DEM, LULC, and soil datasets), which 
tend to be static over time, should also be investigated for their effects on 
uncertainty. Although these spatial input datasets are the most impor-
tant inputs to delineate watersheds and are critical in describing un-
derlying watershed characteristics (Ray, 2018; Shen et al., 2015a), their 
uncertainty has been only partially examined. The resolutions of spatial 
input datasets have been the main focus of previous studies (e.g., 
Chaubey et al., 2005; Dixon and Earls, 2009; Lin et al., 2013; Shen et al., 
2013). Specifically, Dixon and Earls (2009) showed that the resolution 
of a DEM has a significant impact on streamflow volume estimation and 
watershed delineation (e.g., size and number of subwatersheds, and 
average slopes) with three different DEM resolutions (i.e., 30, 90, and 
300 m). Similarly, Chaubey et al. (2005) found that a coarser DEM 
resolution, in a comparison of seven different DEM resolutions, yields 
decreased streamflow and nitrate load estimations due to a decrease in 
subwatershed sizes and slopes. Lin et al. (2013) also reported decreasing 
total phosphorus and nitrogen load accuracy with coarser DEM 
resolutions. 

In addition, the resolutions of LULC and soil datasets affect HRU 
creation in SWAT, which can yield uncertainty in watershed attribute 
properties and streamflow estimation (Kumar and Merwade, 2009). 
Shen et al. (2013) demonstrated the existence of a threshold resolution 
of spatial input datasets (i.e., DEM and LULC), where a finer resolution 
did not benefit the accuracy of SWAT predictions. Furthermore, the 
resolutions of the spatial input datasets can balance each other. For 
example, when the DEM in a finer resolution than a threshold value is 
provided in SWAT, the resolution of LULC becomes less important (Shen 
et al., 2015a). 

We contend that previous SA approaches have tended to evaluate 
only a modest set of the uncertainty sources in spatially distributed 
environmental models, especially in hydrology as illustrated above for 
the widely used SWAT model. A more holistic SA approach for SWAT 
would therefore be conducted with a focus on the following aspects. 
Firstly, although the uncertainty of model input parameters related to 
the submodels of a SWAT application (e.g., watershed delineation and 
HRU creation) have been partially addressed, their impacts on SWAT 
predictions are rarely examined. Secondly, the impact of measurement 
errors in meteorological information (e.g., precipitation, wind speed, 
solar radiation, relative humidity, and temperature) has been poorly 
evaluated in SWAT estimations even though meteorological information 
is considered as a critical source of uncertainty. Finally, the uncertainty 
of spatial input datasets has several strands that warrant investigation in 
SA exercises. One is the uncertainty of spatial data due to lineage, po-
sitional accuracy, attribute accuracy, logical consistency, and 
completeness (ANSI, 1998; Koo et al., 2017). Only the impact of spatial 
dataset resolution has been examined in SWAT applications. Other main 
sources of uncertainty in spatial datasets, due to positional (e.g., 
boundary uncertainty) and attribute (e.g., measurement uncertainty) 
accuracy, should also be considered in SWAT estimations. 

3. Methods 

3.1. SWAT 

SWAT is a watershed model that was developed by the Agricultural 
Research Service of the U.S. Department of Agriculture (USDA) (Neitsch 
et al., 2011). SWAT has been extensively applied in various sectors, 
including water management, hydrology, climate change, land use 

impact, and pollution, to predict the environmental impacts (e.g., land 
use and climate change) on water quantity and quality. To implement SA 
for SWAT applications (Bastin et al., 2013), this paper uses a tool for 
automated SWAT preparation (Zhang et al., 2019), which is based on an 
open source Geographic Information System (GIS) interface for SWAT 
(MWSWAT) (George and Leon, 2008), and implements the SA based on 
the sensitivity analysis package in R (Pujol et al., 2018). 

3.2. The extended FAST method 

SA methods are broadly classified as screening, local and global 
methods (Saltelli et al., 2004). Our analysis applies the extended FAST 
method (Saltelli et al., 1999) to evaluate the uncertainties associated 
with model parameters and input datasets (i.e., factors), and their in-
teractions, because the factors are not independent and typically 
interact with one another. 

The extended FAST is one of the SA variance decomposition 
methods. The variance decomposition method evaluates the sensitivity 
of the model output using sensitivity indices (Sobol, 2001) which 
compute the fractional contributions of input uncertainty (Xi) to the 
variance in the model output (Y). This variance is defined as: 

V ¼ 
X

i� 1
Vi þ

X

i<j
Vij þ⋯þ V1  2…d  (1)  

where 

Vi ¼  V½EðYjXiÞ�

Vij¼  V
�
E
�
Y
�
�Xi;  Xj

��
� Vi � Vj  

EðYjXiÞ denotes the conditional expected value of Y on Xi, and V½⋅�
represents a conditional variance. The main effect index (Si) and the 
first-order interaction effect (SijÞ can be represented as follows: 

Si ¼Vi=V (2)  

Sij¼Vij
�

V (3) 

The main effect index quantifies the effect of only Xi over the aver-
aged variations in other factors and is scaled by the total variance to 
represent the fractional contribution. The total effect index (STi) can be 
defined as: 

STj ¼ 1 � V½EðYjX� iÞ�
�

V (4)  

where X� i is the subset of all elements (X) except Xi. The main and the 
total effect indices are generally used to determine critical factors and to 
screen out uncritical factors, respectively (Yang et al., 2018). This study 
explores the uncertainty caused by each factor (i.e., model input datasets 
and parameters, as shown in Table 1) on SWAT estimations and their 
interactions to understand the uncertainty effects across its submodels. 
However, an alternative solution is necessary to quantify interaction 
effects because a vast number of indices, which is 2n � 1 with n factors, 
needs to be estimated to represent all interaction effects among factors. 
The extended FAST can be an alternative (Saltelli et al., 1999) because it 
furnishes only the estimates of both the main and total effects. Because 
the total effect indices include a main effect and all higher-order inter-
action effects related to specific factors, an interaction effect can be 

Table 1 
Uncertainty sources of SWAT.  

Submodel Source 

Watershed 
delineation 

DEM, precision of stream networks (MinStream) 

HRU creation LULC, Soil dataset, MinLU, MinSoil, MinSlope, and IntSlope 
SWAT execution Meteorological input datasets (e.g., UPREC) and SWAT 

parameters  
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distinguished by subtracting the main effect index from the total effect 
index. Additionally, the extended FAST is known to show better effi-
ciency than the Sobol method, which is another extensively employed 
sensitivity method (G�omez-Delgado and Tarantola, 2006). 

The sampling technique for the extended FAST method is fixed, 
which converts a multi-dimensional integral to a one dimension integral 
(Gan et al., 2014). After the number of factors is determined, the min-
imum sample size ðNsÞ for the extended FAST is not changeable (Gan 
et al., 2014), and is calculated by the following (Saltelli et al., 1999): 

Ns¼  Nrð2Mωiþ 1Þ (5)  

where M denotes the interference factor (set to 4 in this analysis), ωi 
represents the frequency assigned to the factor of interest, and Nr is the 
number of resamplings. For 15 factors, the ωi and Nr are set to 143 and 3 
in order to keep the ratio ωi=Nr within 16 and 64, which is an optimal 
region for convergence of SA indices (Saltelli et al., 1999). Following 
this recommendation, the sample size in this analysis is determined as 3, 
435. 

4. Application 

4.1. Study area and datasets 

This study illustrates a more holistic SA approach to spatially 
distributed environmental models with a SWAT example in a subset of 
the Minjiang River watershed. The Minjiang River watershed is located 
in the upper part of the Yangtze River basin, and the subset of the 
watershed in this analysis covers approximately 12,893 km2 (Fig. 1). 
The Minjiang River is the largest tributary of the Upper Yangtze River 
and supplies water to downstream regions for agriculture (e.g., Chengdu 
and its neighbors). This watershed is highly vulnerable to climate 
change due to its high elevation, which ranges from 1,627 to 5,419 m. 
Thus, the Minjiang River watershed has been a high priority for devel-
oping and conserving the Yangtze River regions (Cui et al., 2012). 

As previously indicated, SWAT requires spatial input datasets (e.g., 
DEM, LULC, and a soil dataset) and meteorological input datasets (e.g., 
precipitation, wind speed, relative humidity, and solar radiance) for its 
execution. This study has conducted analyses using commonly available 

spatial input datasets and meteorological input datasets (George and 
Leon, 2008) to ensure that its findings are readily applicable to other 
studies. The DEM was obtained from the NASA SRTM version 4.1, which 
was published by the Consultative Group on International Agriculture 
Research-Consortium for Spatial Information (CGIAR-CSI), with a 
spatial resolution of 3 arc-second (approximately 90 m) (Jarvis et al., 
2008). The source of the LULC is based on the Global Land Cover 
Characterization (GLCC) database (Loveland et al., 2000), and the soil 
dataset was obtained from the Food and Agriculture Organization of the 
United Nations (FAO/UNESCO, 2003). Both the LULC dataset and the 
soil dataset are published in WaterBase (George and Leon, 2008) with 
spatial resolutions of 500 m and 600 m, respectively. The meteorological 
dataset was obtained using the National Center for Environmental Pre-
diction (NCEP) Climate Forecast System Reanalysis (CFSR) (Fuka et al., 
2014) in 2013. This study utilizes meteorological information from only 
one monitoring station to focus on the measurement uncertainty of 
meteorological information and avoid uncertainty produced by the 
numbers and locations of monitoring stations (Strauch et al., 2012). 

4.2. Identifying sources of uncertainty 

A SWAT application consists of three sequential submodels: water-
shed delineation, HRU creation, and SWAT execution. Each model re-
quires separate model input datasets and parameters, which can be 
considered sources of uncertainty (Table 1). First, in the watershed 
delineation, a minimum threshold value is necessary for this analysis to 
designate drainage to a stream network (MinStream). Although a pre-
defined stream network dataset can be superimposed on a DEM for ac-
curate stream network delineation (e.g., Setegn et al., 2010), the 
predefined dataset should have a different precision depending on its 
target scale and/or scale of its source map. Thus, this analysis directly 
generates a stream network from the DEM to consider the uncertainty of 
the stream network precision. This stream network precision is directly 
related to the overall sizes of subwatersheds, which can partially address 
a scale issue in spatial datasets (Chrisman, 1991). Second, the DEM is 
required to delineate watersheds as a model input dataset. Previous 
studies have primarily addressed the impact of DEM resolution on SWAT 
estimations (e.g., Chaubey et al., 2005; Dixon and Earls, 2009; Shen 
et al., 2013). A DEM also contains systematic and random errors due to 
an inherent elevation measurement error, whose impact on watershed 
delineation has been investigated (Hengl et al., 2010; Oksanen and 
Sarjakoski, 2005; Wu et al., 2008). Thus, the measurement error of DEM 
(UDEM) can have an influence on SWAT estimations. 

Second, the HRU creation model requires additional model input 
datasets, i.e., LULC and soil datasets, because HRUs are generally 
formed as a combination of LULC, soil, and slope ranges. These datasets 
can be considered sources of uncertainty in this submodel. SWAT clas-
sifies slope range on an ordinal scale. For simplification of this analysis, 
the slope range is divided into two groups based on the intermediate 
value of slope as a percentage. Then, the intermediate value of the two 
groups (IntSlope) is used as a model input parameter, which can be a 
source of uncertainty. However, a slope dataset itself is not considered a 
source of uncertainty in this analysis because a slope dataset is directly 
generated from the uncertainty propagated DEM. Additionally, input 
parameters of three models are required to define multiple HRUs in a 
watershed. The model parameters are used to eliminate small HRUs by 
considering minimum percentages for the categories of LULC (MinLU), 
soil (MinSoil), and slope (MinSlope). 

Lastly, the meteorological input dataset and SWAT parameters can 
be sources of uncertainty. The meteorological input dataset includes 
precipitation, temperature, wind speed and solar radiation, as well as 
information about meteorological monitoring station locations. For 
simplicity, this analysis considers only uncertainty in precipitation 
(UPREC) because the uncertainty of precipitation is known to generally 
have a greater influence on SWAT estimations than any other meteo-
rological input datasets (Chaplot et al., 2005; Strauch et al., 2012). Fig. 1. Minjiang River watershed and a meteorological monitoring station.  
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Specifically, a measurement error in precipitation is the main interest in 
this analysis, and the positional uncertainty of monitoring stations for 
precipitation measurement is not evaluated because previous studies 
have adequately addressed this aspect (e.g., B�ardossy and Das, 2008; 
Chaplot et al., 2005; Fu et al., 2011). With regard to SWAT parameter 
uncertainty, only a few significant parameters (see the Appendix) are 
selected and applied here in the SA to reduce the computational cost and 
to concentrate on other factors (e.g., MinStream and UPREC), although 
SWAT applications typically consist of hundreds of model parameters 
(Neitsch et al., 2011, pp. 567–595). 

4.3. Propagating the identified uncertainty sources 

Obtaining a proper uncertainty propagation model, especially with 
plausible range and distributional assumptions, is a crucial process in 
SA. The propagation model primarily reflects the degree of uncertainty 
in model inputs and determines the impact on the uncertainty of model 
output. Generally, a scalar random variable (e.g., model input parame-
ters) can be simply represented using a probability density function. 
However, complex types of model inputs (e.g., spatial input datasets) 
require a more complex uncertainty propagation model by simulta-
neously considering various components of uncertainty (Crosetto and 
Tarantola, 2001). This study introduces various propagation models for 
the corresponding uncertainty sources with their justification. 

For watershed delineation, two sources of uncertainty were identi-
fied in the previous section: UDEM and MinStream. Generating the un-
certainty propagation model for UDEM is a challenge due to the 
complexity of the DEM and the existence of spatial autocorrelation in the 
DEM measurement errors (Temme et al., 2009). Thus, a limited number 
of relevant studies have been conducted (e.g., Fisher, 1998; Hengl et al., 
2010; Holmes et al., 2000). To describe the spatially correlated structure 
of UDEM, this study constructs its uncertainty propagation model based 
on a sequential Gaussian simulation (Goovaerts, 1997; Pebesma, 2004). 
Then, the propagated values of UDEM are scaled based on a normal 
distribution to reflect the realistic range of measurement uncertainty in 
UDEM. The value of the scale parameter, which indicates the accuracy (i. 
e., difference to the true value) at a 95% confidence level, determines 
the level of uncertainty in UDEM. The scale parameters are uniformly 
distributed in the range between 0 and 16 because the total vertical 
accuracy in an SRTM v4.1 dataset with a 3 arc-second resolution is �16 
m at a 95% confidence level (Mukul et al., 2017). Lastly, the generated 
values of UDEM are added to the original DEM. Fig. 2 shows examples of 

the uncertainty propagation model of UDEM with the scale parameter 
values of 4, 8 and 16. 

Another source of uncertainty in watershed delineation is MinStream, 
which is a critical parameter for determining the precision of a stream 
network. MinStream is simply modelled here based on a uniform distri-
bution because it is represented as a scalar random variable. Because 
MinStream parameter uncertainties have not been fully considered in 
previous SA studies and is the critical parameter to determine spatial 
scales of a subwatershed, this parameter is examined with two different 
ranges. The uncertainty associated with MinStream is modelled by 
changing its uniformly distributed values in the range between 5,000 
and 15,000 and 10,000–15,000 by considering widely available spatial 
datasets for stream networks. Specifically, the generated stream network 
from the MinStream value of 15,000 approximately corresponds to the 
stream network in the 1:1,000,000 Vector Map (i.e., VMAP0), and that 
from the value of 5,000 shows slightly coarser stream network than the 
1:250,000 topographic map [i.e., Joint Operations Graphic (JOG)]. 
Fig. 3 illustrates examples of the stream network generation with Min-
Stream values of 5,000, 10,000, and 15,000. In Fig. 3, the precision of the 
generated stream network tends to decrease when MinStream is 
increased. For instance, by increasing MinStream, an exponential 
decrease in the line feature counts of the generated stream networks 
(Fig. 3), which are 189, 89, 51 features for MinStream values of 5,000, 
10,000, and 15,000, respectively, is observed. MinStream also relates 
strongly to overall size and number of subwatersheds. An increase in 
MinStream would lead to an increase in the number of subwatersheds, 
and a decrease in the overall size. 

In the HRU creation submodel, uncertainty propagation models were 
generated for the following uncertainty sources, which have associated 
model input datasets, i.e., LULU (ULUCL) and soil datasets (USOIL), and 
model input parameters, i.e., MinLU, MinSoil, MinSlope, and IntSlope. 
ULULC and USOIL require an uncertainty propagation model that differs 
from the previous uncertainty propagation model for UDEM. It is noted, 
however, that LULC, soil datasets, and DEM are the same as raster 
datasets because they are represented on a different measurement scale 
(i.e., LULC and soil datasets are categorical raster datasets but the DEM 
is a quantitative raster dataset) (Heuvelink, 1998). This study constructs 
the uncertainty propagation models for ULUCL and USOIL by adopting 
the concept of the epsilon band, which was originally developed for 
vector data to represent boundary uncertainty (Crosetto and Tarantola, 
2001; Shi, 1998). ULUCL is modelled using a uniformly distributed band 
within 2,000 m on both sides because LULC is generated based on a 1 km 

Fig. 2. Examples of DEM measurement error to be used for uncertainty propagation.  
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monthly Advanced Very High Resolution Radiometer (AVHRR) satellite 
image. Similarly, USOIL is modelled within 2,500 m on both sides by 
adopting the rule of thumb for the positional uncertainty from maps 
(Longley et al., 2011), which represents the maximum uncertainty of 
0.5 mm at the sources of the soil dataset (i.e., Soil Map of the World at 
1:5 million). Because the uncertainty propagation models of MinLU, 
MinSoil, MinSlope, and IntSlope have not been fully investigated in pre-
vious research, all possible ranges of the parameters are examined here 
by assuming a uniform distribution. MinLU, MinSoil, MinSlope, and 
IntSlope were given the ranges of [5, 42], [5, 50], [5, 50], and [0.05, 
0.8], respectively (Table 2). 

We now address the uncertainty propagation models used for UPREC 
and the SWAT parameters for SWAT execution. Firstly, the uncertainty 
propagation model for UPREC is constructed based on a uniform dis-
tribution in the range [-15.2, 15.2] with a relative change to its observed 
precipitation. This range reflects the maximum measurement error of 
precipitation in China, which varies from �4.34% to �15.2% with a 
mean of �6.52% in China according to the State Meteorological 
Administration (Ren et al., 2003; Shen et al., 2015b). 

For the SWAT parameters, we chose the more sensitive SWAT pa-
rameters using the Morris screening method (Morris, 1991) among the 

candidate SWAT parameters acquired from the SWAT model calibration 
literature (e.g., Abbaspour, 2015; Abbaspour et al., 2007; Yang et al., 
2018) (Appendix). Also, the ranges of the SWAT parameters (Table A-1) 
follow standard levels in SWAT model calibrations and SA studies, in the 
absence of better information. The selected parameters, in accordance 
with their SWAT parameter names, are the following: ALPHA_BF, 
GW_DELAY, CN2, ESCO, RCN, and NPERCO. Briefly, ALPHA_BF and 
GW_DELAY are used to describe the properties of groundwater, and CN2 
is the type of HRU management option, which includes land and water 
management practices. ESCO is related to the HRU general input file and 
describes diverse features within HRUs. RCN and NPERCO are utilized to 
define general watershed attributes, which are expected to be sensitive 
factors for nitrate outputs (NO3). Finally, Table 2 describes all selected 
parameters and their uncertainty propagation models that are used in 
the following sensitivity analyses (Refer Table A-1 for further detail of 
SWAT parameters). 

5. Results of analyzing the uncertainty sources through SA 

This analysis evaluates the impacts of the fifteen factors on variations 
in the two SWAT output estimates considered; i.e., FLOW and NO3 at the 

Fig. 3. Examples of the uncertainty propagation model for stream network precision.  

Table 2 
The corresponding uncertainty propagation models of the identified uncertainty sources in SWAT.  

Submodel Source Description Model 

Watershed 
delineation 

UDEM Spatially autocorrelated measurement errors of elevations Sequential Gaussian simulation with the uniformly distributed scale 
parameters [0, 16] 

MinStream Uncertainty with the minimum threshold value to designate 
drainage to a stream 

U [5,000, 15,000] 

HRU creation ULUCL Boundary uncertainty of landuse categories (m) Epsilon bands between [-2,000, 2,000] 
USOIL Boundary uncertainty of soil categories (m) Epsilon bands between [-2,500, 2,500] 
MinLU Uncertainty with the minimum percentage for a landuse category in 

HRU (%) 
U [5, 42] 

MinSoil Uncertainty with the minimum percentage for a soil category in 
HRU (%) 

U [5, 50] 

MinSlope Uncertainty with the minimum percentage for a slope category in 
HRU (%) 

U [5, 50] 

IntSlope Uncertainty with the intermediate slope percentage (%) U [0.05, 0.8] 
SWAT execution UPREC Percentage of measurement errors to observed precipitation (%) U [-15.2, 15.2] 

ALPHA_BF Uncertainty of the baseflow alpha constant U [0, 1] 
CN2 Uncertainty of SCS run off curve number for moisture condition U [-0.15, 0.15] 
ESCO Uncertainty of soil evaporation compensation factor U [0, 500] 
GW_DELAY Uncertainty of ground water delay time (day) U[0, 500] 
NPRECO Uncertainty of nitrate percolation coefficient U [0.01, 1.00]  
RCN Uncertainty of nitrogen in rain (mg N/L) U [0, 2.5] 

*U denotes a uniform distribution model. 
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outlet of the Minjiang River watershed (refer to Fig. 1). Firstly, the im-
pacts of the fifteen factors on FLOW are evaluated in terms of the main 
and total effect indices using the extended FAST (Fig. 4). As we discussed 
in Section 4.3, two different ranges of MinStream [i.e., the wide range 
(W-SA) between 5,000 and 15,000 and the narrow range (N-SA) be-
tween 10,000 and 15,000] are applied in the SA for further exploration 
of this factor. For both SA results, the main effect shows that five factors 
have a larger influence than others on the variation in FLOW: MinStream, 
CN2, UPREC, GW_DELAY and ESCO. Although in comparing N-SA 
(Fig. 4-b) to W-SA (Fig. 4-a), the main effect of MinStream decreases [i.e., 
MinStream (65.8%–54.7%)] and those of other four factors increase [i.e., 
CN2 (6.2%–12.5%), UPREC (5.0%–9.4%), GW_DELAY (3.3%–6.6%) and 
ESCO (1.8%–2.7%)], the order of their main effects are still consistent. 
The range of generated stream feature counts in N-SA is much narrower 
than those in W-SA (i.e., 51–89 and 51–189, respectively. see Fig. 3), but 
MinStream still has the largest influence on FLOW. The main effects of 
other factors are less than 1%. In the total effects for both SA results, 
MinStream (77.3% and 64.8%), the three SWAT parameters [i.e., CN2 
(18.9% and 25.3%), GW_DELAY (8.2% and 10.4%), ESCO (9.1% and 
10.2%)], and UPREC (12.4% and 14.5%) have the greatest influence on 
FLOW. The difference between the total and main effect indices provides 
the interaction effect between a factor and other factors. Comparing N- 
SA (Fig. 4-b) to W-SA (Fig. 4-a), the overall interaction effects, especially 
of the factors related to the HRU creation submodel, decreases, which 
could suggest that MinStream highly interacts with the factors. 

The SA results for NO3 show a slightly different relative importance 
among the fifteen factors compared with the previous results for FLOW 
(Fig. 4). With main effect indices, MinStream (22.0%) is still the most 
critical factor in the W-SA result (Fig. 5-a), but in the N-SA result (Fig. 5- 
b), the SWAT parameters, i.e., RCN (20.5%), NPERCO (16.7%), CN2 
(14.8%), have a larger influence on the NO3 variation than MinStream 
(14.7%). UPREC shows a relatively high value for the main effect index 
(0.9% and 1.5% in W-SA and N-SA results, respectively), whilst the main 
effects of other factors have still much smaller impacts, less than 1%. 
With the interaction effect, the NO3 results show a similar trend with the 
previous FLOW results, which is an overall decrease in the interaction 
effects compared to N-SA (Fig. 5-b) with W-SA (Fig. 5-a). In the N-SA 
result, the interaction effects for all factors, except for the five critical 
factors, are less than 1%. We suspect that a decrease in the impact of 
MinStream leads to this decrease in the interaction effects. 

These SA results suggest the following findings. Firstly, the precision 
of a stream network (MinStream) in the watershed delineation submodel 
generally has the largest impact on variations in FLOW and NO3. Fig. 6 
shows the relationships among MinStream, subwatershed count, and the 
estimations of FLOW and NO3 over the wide range of MinStream (W-SA). 

In this analysis, MinStream shows a significantly negative relationship 
with the number of generated subwatersheds, with a correlation coef-
ficient of � 0.975 (p-value < 0.001) (Fig. 6-a), which indicates that the 
number of subwatersheds and the watershed delineation model can 
substantially affect SWAT estimations. This result is consistent with a 
previous study (Chaubey et al., 2005), in which as the number of wa-
tersheds increases (i.e., the subwatershed size decreases), the average 
streamflow and nitrate load decreases (Fig. 6-b and c). Also, by 
comparing SA in its narrow range with its wide range (W-SA), MinStream 
could contribute to increases in the overall total effects due to its high 
interaction with other factors. 

Secondly, the uncertainties of input datasets and parameters for the 
HRU creation (i.e., ULUCL, USOIL, MinSoil, MinSlope, MinSlope, and 
IntSlope) have small impacts on the SWAT estimations with the ranges of 
the factors selected. Thus, this application shows that uncertainty in the 
HRU creation has a lesser effect on variations in the SWAT outputs than 
any other submodels. Thirdly, the total effects results show that UPREC 
addresses 12.4% and 14.5% of the FLOW, and 5.1% and 3.2% of the NO3 
variations in the case of the W-SA and N-SA results, respectively, which 
could require stronger consideration of measurement uncertainty of 
precipitation in SWAT applications. 

Finally, this analysis reconfirms that certain SWAT parameters are 
the other important uncertainty sources in SWAT outputs according to 
high values in their main and total effects indices. As known in previous 
studies (e.g., Abbaspour et al., 2007), CN2 (SCS runoff curve number for 
moisture condition) has an influence on both FLOW and NO3, and RCN 
and NPERCO have impacts on NO3 only. However, the HRU manage-
ment option, for example, fertilizer management including types and 
amount of fertilizers, may have considerable impacts on NO3 output but 
this analysis did not specify the related management options. 

6. Conclusion 

A wide range of sources of uncertainty and their relative importance 
were examined in the context of an integrated, spatially distributed 
environmental model based on a SWAT application in the Minjiang 
River watershed in Sichuan, China. This paper identified the strength of 
uncertainty sources with respect to watershed delineation, HRU crea-
tion, and SWAT execution, thereby addressing the uncertainty of model 
structure through uncertainties of the input parameters and datasets in 
these submodels. With the ranges of the factors explored, results of our 
analysis show that the uncertainty of the stream network precision 
(MinStream) and certain SWAT parameters, [e.g., CN2 (SCS runoff curve 
number for moisture condition), GW_DELAY (Ground water delay time) 
and ESCO (Soil evaporation compensation factor)] for the FLOW output, 

Fig. 4. SA results for estimation of FLOW: a) the wide range of MinStream (W-SA), and b) the narrow range of MinStream (N-SA).  
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and RCN (Nitrogen in rain), NPERCO (Nitrate percolation coefficient), 
and CN2 for NO3, as well as the measurement uncertainty of precipi-
tation are the most critical factors for the SWAT predictions. 

Importantly, among various uncertainty sources related to the sub-
models, the stream network precision has a strong influence on both the 
variations of water quantity and quality estimations, because it has a 
profound effect on watershed delineation and specifically determines 
the overall sizes of subwatersheds. In addition, the stream network 
precision propagates influences on factors in subsequent submodels. 
Thus, this analysis shows that selecting an appropriate spatial scale to 
describe underlying subwatersheds can be a fundamentally important 
step for SWAT modelling. Furthermore, this study illustrates the 
inherent spatial scale of a spatial input dataset in spatially distributed 
environmental models needs to be considered as a source of uncertainty 
(i.e., a factor of in the SA analysis). 

This article aims to contribute to SA practice considerations more 
widely, beyond SWAT to the implications for spatially distributed 
environmental models. Specifically, the framework of SA examined in 
this paper provides a solid starting point for subsequent analyses of 
various spatially distributed integrated watershed models. Although this 
analysis was conducted specifically using a SWAT application, other 
environmental models [e.g., Storm Water Management Model (SWMM) 
(Rossman, 2010)] may contain similar kinds of uncertainty sources, for 
example, model input datasets and parameters. In particular, the un-
certainty propagation methods used in this analysis, for example, a 

propagation model for measurement uncertainty considering its re-
ported accuracy (e.g., SRTM and precipitation) and for positional un-
certainty incorporating the rule of thumb for the positional uncertainty 
from maps (Longley et al., 2011), would be easily applicable to other 
spatially distributed environmental models. 

This study has illustrated a more holistic SA process applied to a 
single geographic region. Therefore, the specific results may not be 
applicable to other geographical regions; that is, the uncertainty sources 
may show different relative importance in other study areas. Also, 
similar to other SA studies, SA results should be carefully interpreted 
with only selected ranges of prior distributions for corresponding fac-
tors. The criticality of a factor is determined with the selected ranges of 
all related factors, which should be explained in regard to only the 
selected ranges. However, the SA process in this paper is expected to 
offer guidance for more general SWAT applications and other spatially 
distributed environmental model applications. 

Another proposed extension relates to achieving more realistic and 
credible uncertainty propagation models for model input parameters. 
Although an uncertainty propagation model has a significant effect on 
the results of SA, the models of the input parameters in the HRU creation 
submodel (i.e., MinLU, MinSoil, MinSlope, and IntSlope) might not be 
realistic. The complete possible ranges under a uniform distribution 
were evaluated here due to the lack of findings from previous studies. 
Although they have a small impact on the SWAT estimations in this 
application within the complete available ranges, an additional 

Fig. 5. SA results for NO3: a) the wide range of MinStream (W-SA), and b) the narrow range of MinStream (N-SA).  

Fig. 6. Relationships among MinStream, subwatershed count, FLOW and NO3.  
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evaluation of the impact of the different ranges and/or probability dis-
tributions on the uncertainty analysis results may be profitable. One 
approach is to apply model emulation to SWAT, which would yield 
sensitivities to factors throughout their entire range, as undertaken in 
Yang et al. (2018). 

This analysis has used a traditional global SA based on spatio- 
temporally aggregated measures (e.g., yearly average streamflow and 
NO3 loads), which neglects spatio-temporally dynamical behaviors of 
environmental models (Gupta and Razavi, 2018). Specifically, 
spatio-temporal variations of SA for stream flow can vary under different 
conditions, such as higher precipitation in summer in the study area, and 
thus the use of aggregated measures can provide a limited perspective 
for SA. Incorporating spatio-temporally varying SA [e.g., generalized 
global sensitivity matrix approach (Razavi and Gupta, 2019)] into our 
SA approach would be helpful to support a better understanding of the 
dynamic behavior. 

Some relatively well-known uncertainty sources (e.g., spatial distri-
bution and the number of meteorological monitoring stations, resolu-
tions of input spatial datasets) were not addressed here. Although their 
main effects on SWAT estimations are relatively well explained, the 
interaction effects of the missing sources with the identified uncertainty 
sources in this analysis should be investigated. 

Finally, reliability and convergence tests might be necessary for SA 
results. Conducting analysis with different SA methods [e.g., McKay 
main and two-way interaction effect analysis (McKay, 1995)] applied to 

the current holistic set of factors might be helpful in enhancing the 
reliability of the results. Multiple methods help to provide a more 
complete and robust understanding of critical sources because different 
SA methods might yield somewhat different results as to the relative 
importance of factors (Pappenberger et al., 2008; Teng et al., 2017) due 
to the fact they either measure different effects or evaluate them in 
different ways. Additionally, although the extended FAST provides 
guidance on the minimum sample size for its convergence (Saltelli et al., 
1999), it would be worth conducting a convergence analysis to enhance 
the credibility of the SA results (e.g., Vanrolleghem et al., 2015). 
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Appendix 

The Morris screening method (Morris, 1991) was applied to SWAT parameters to select critical uncertainty sources on streamflow (designated as 
FLOW) and nitrate (NO3). Based on the Morris screening results (i.e., the absolute mean and standard deviation of their elementary effects), these 
following six SWAT parameters were chosen for the subsequent extended FAST analyses: v__ALPHA_BF.gw, v__GW__DELAY.gw, r__CN2.mgt, v__ESCO. 
hru, v__RCN.bsn, and v__NPERCO.bsn (Fig. A-1). Table A-1 lists the candidate SWAT parameters and their ranges. The candidate parameters are 
relative well known to be sensitive to streamflow and nitrate loads (Abbaspour et al., 2007), and their ranges follow standard levels of SWAT model 
parameterization (Abbaspour, 2015; Yang et al., 2018). The notation ‘v__’ or ‘r__’ in the factor names denotes a replacement or a relative change, 
respectively, to their initial values. All parameters are globally applied into replacement and change into the entire study area (Yang et al., 2007). 
Refer to the SWAT documentation for additional descriptions of the SWAT parameters (Neitsch et al., 2011).  

Fig. A-1. The Morris screening results: a) FLOW and b) NO3   
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Table A-1 
Candidate SWAT parameters and their ranges  

No. Factor Range SWAT parameter 

1. v__ALPHA_BF.gw [0, 1] ALPHA_BF: Baseflow alpha factor 
2 v__CANMX.hru [0.1, 1] CANMX: Maximum canopy storage (mm H2O) 
3 v__CH_K2.rte [0, 500] CH_K(2): Effective hydraulic conductivity in the main channel alluvium (mm/hr) 
4 v__CH_N2.rte [0, 0.3] CH_N(2): Manning’s ‘n’ value for the main channel 
5 r__CN2.mgt [-0.15, 0.15] CN2: SCS runoff curve number for moisture condition 
6 v__ERORGN.hru [0, 5] ERORGN: Organic N enrichment for sediment 
7 v__ESCO.hru [0, 1] ESCO: Soil evaporation compensation factor 
8 v__GW_DELAY.gw [0, 500] GW_DELAY: Ground water delay time (day) 
9 v__GWQMN.gw [0, 1000] GWQMN: Threshold water level in shallow aquifer for baseflow (mm) 
10 v__NPERCO.bsn [0.01, 1] NPERCO: Nitrate percolation coefficient 
11 v__RCN.bsn [0, 2.5] RCN: Nitrogen in rain (mg N/L) 
12 v__REVAPMN.gw [0, 500] REVAPMN: Threshold depth of water in shallow aquifier for ‘revap’ (mm) 
13 v__SFTMP.bsn [-1, 1] SFTMP: Snowfall temperature (�C) 
14 v__SMTMP.bsn [-1, 1] SMTMP: Snow melt base temperature (�C) 
15 r__SOL_AWC.sol [-0.25, 0.25] SOL_AWC: Soil available water storage capacity (mm H2O/mm soil) 
16 v__SURLAG.bsn [0, 24] SURLAG: Surface runoff lag time (day)  
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